【非标设计】PCB印刷电路板设计基础教程

107 0

PCB设计基础


印刷电路板(Printed circuit board,PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互酒连接。随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。标准的PCB长得就像这样。裸板(上头没有零件)也常被称为「印刷线路板Printed Wiring Board(PWB)」。


板子本身的基板是由绝缘隔热、并不易弯曲的质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。

为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。

如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是ZIF(Zero Insertion Force,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。

如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edge connector)。金手t上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。

PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位s。丝网印刷面也被称作图标面(legend)。


单面板(Single-Sided Boards)

我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。

双面板(Double-Sided Boards)

这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的「桥梁」叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板桓丛拥牡缏飞稀
多层板(Multi-Layer Boards)

为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。大部分的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为PCB中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。

我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子。不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔(Buried vias)和盲孔(Blind vias)技术可以避免这个问题,因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。

在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。

零件封装技术

插入式封装技术(Through Hole Technology)

将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through Hole Technology,THT)」封装。这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。所以它们的接脚其实占掉两面的空间,而且焊点也比较大。但另一方面,THT零件和SMT(Surface Mounted Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。像是排线的插座,和类似的界面都需要能耐压力,所以通常它们都是THT封装。

表面黏贴式封装技术(Surface Mounted Technology)

使用表面黏贴式封装(Surface Mounted Technology,SMT)的零件,接脚是焊在与零件同一面。这种技术不用为每个接脚的焊接,而都在PCB上钻洞。
表面黏贴式的零件,甚至还能在两面都焊上。

SMT也比THT的零件要小。和使用THT零件的PCB比起来,使用SMT技术的PCB板上零件要密集很多。SMT封装零件也比THT的要便宜。所以现今的PCB上大部分都是SMT,自然不足为奇。

因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。

设计流程


在PCB的设计中,其实在正式布线前,还要经过很漫长的步骤,以下就是主要设计的流程:

系统规格


首先要先规划出该电子设备的各项系统规格。包含了系统功能,成本限制,大小,运作情形等等。

系统功能区块图


接下来必须要制作出系统的功能方块图。方块间的关系也必须要标示出来。

将系统分割几个PCB 


将系统分割数个PCB的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。系统功能方块图就提供了我们分割的依据。像是计算机就可以分成主机板、显示卡、声卡、软盘驱动器和电源等等。

决定使用封装方法,和各PCB的大小


当各PCB使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。在选择技术时,也要将线路图的品质与速度都考量进去。

 

绘出所有PCB的电路概图

各零件间的相互连接细节。所有系统中的PCB都必须要描出来,现今大多采用CAD(计算机辅助设计,Computer Aided Design)的方式。下面就是使用CircuitMakerTM设计的范例。

 

PCB的电路概图

初步设计的仿真运作


为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。这类软件可以读取设计图,并且用许多方式显示电路运作的情况。这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。

 

将零件放上PCB 


零件放置的方式,是根据它们之间如何相连来决定的。它们必须以最有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再测试布线可能性,与高速下的正确运作,现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。

 

导出PCB上线路


在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是2层板的导线模板。红色和蓝i的线条,分别代表PCB的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。最右方我们可以看到PCB上的焊接面有金手指。这个PCB的最终构图通常称为工作底片(Artwork)。

 

每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其它类似的实际限制等。这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少PCB的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩。

导线后电路测试


为了确定线路在导线后能够正常运作,它必须要通过最后检测。这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。

建立制作档案


因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标准的档案,才能制造板子。标准规格有好几种,不过最常用的是Gerber files规格。一组Gerber files包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。

电磁兼容问题


没有照EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC对电磁干扰(EMI),电磁场(EMF)和射频干扰(RFI)等都规定了最大的限制。这项规定可以确保该电器与附近其它电器的正常运作。EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。换言之,这项⒍ǖ哪康木褪且防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。

电路的最大速度得看如何照EMC规定做了。内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小PCB,会比大PCB更适合在高速下运作。

制造流程


PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的「基板」开始


影像(成形/导线制作)


制作的第一步是建立出零件间联机的布线。我们采用负片转印(Subtractive transfer)方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印(Additive Pattern transfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。
如果制作的是双面板,那么PCB的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。

 

接下来的流程图,介绍了导线如何焊在基板上。


正光阻剂(positive photoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。
遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。这些被光阻剂盖住的地方,将会变成布线。


在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂的有,氯化铁(Ferric Chloride),碱性氨(Alkaline Ammonia),硫酸加过氧化氢(Sulfuric Acid + Hydrogen Peroxide),和氯化铜(Cupric Chloride)等。蚀刻结束后将剩下的光阻剂去除掉。这称作脱膜(Stripping)程序。

钻孔与电镀


如果制作的是多层PCB板,并且里头包含埋孔或是盲孔的话,每一层板子在黏合前必须要先钻孔与电镀。如果不经过这个步骤,那么就没办法互相连接了。
在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连亍T诳始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学制程中完成。

 

多层PCB压合


各单片层必须要压合才能制造囟嗖惆濉Q购隙作包括在各层间加入绝缘层,以及将彼此黏牢等。如果有透过好几层的导孔,那么每层都必须要重复处理。多层板的外侧两面上的布线,则通常在多层板压合后才处理。


处理阻焊层、网版印刷面和金手指部份电镀


接下来将阻焊漆覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份外了。网版印刷面则印在其上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。金手指部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

测试

 

测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准剩不过光学测试可以更容易侦测到导体间不正确空隙的问题。

零件安装与焊接


最后一项步骤就是安装与焊接各零件了。无论是THT与SMT零件都利用机器设备来安装放置在PCB上。

 

THT零件通常都用叫做波峰焊接(Wave Soldering)的方式来焊接。这可以让所有零件一次焊接上PCB。首先将接脚切割到靠近板子,并且稍微弯曲以让零件能够固定。接着将PCB移到助溶剂的水波上,让底部接触到助溶剂,这样可以将底部金属上的氧化物给除去。在加热PCB后,这次则移到融化的焊料上,在和底部接触后焊接就完成了。

自动焊接SMT零件的方式则称为再流回焊接(Over Reflow Soldering)。里头含有助溶剂与焊料的糊状焊接物,在零件安装在PCB上后先处理一次,经过PCB加热后再处理一次。待PCB冷却之后焊接就完成了,接下来就是准备进行PCB的最终测试了

节省制造成本的方法


为了让PCB的成本能够越低越好,有许多因素必须要列入考量:


板子的大小自然是个重点。板子越小成本就越低。部份的PCB尺寸已经成为标准,只要照着尺寸作那么成本就自然会下降。

 

CustomPCB网站上有一些关于标准尺寸的信息。

使用SMT会比THT来得省钱,因为PCB上的零件会更密集(也会比较小)。

另一方面,如果板子上的零件很密集,那么布线也必须更细,使用的设备也相对的要更高阶。同时使用的材质也要更高级,在导线设计上也必须要更小心,以免造成耗电等会对电路造成影响的问题。这些问题带来的成本,可比缩小PCB尺寸所节省的还要多。

层数越多成本越高,不过层数少的PCB通常会造成大小的增加。

钻孔需要时模所以导孔越少越好。

埋孔比贯穿所有层的导孔要贵。因为埋孔必须要在接合前就先钻好洞。

板子上孔的大小是依照零件接脚的直径来决定。如果板子上有不同类型接脚的零件,那么因为机器不能使用同一个钻头钻所有的洞南喽缘谋冉虾氖奔洌也代表制造成本相对提升。


使用飞针式探测方式的电子测试,通常比光学方式贵。一般来说光学测试已经足够保证PCB上没有任何错误。


总而言之,厂商在设备上下的工夫也是越来越复杂了。了解PCB的制造过程是很有用的,因为当我们在比较主机板时,相同效能的板子成本可能不同,稳定性也各异,这也让我们得以比较各厂商的能力。


好的工程师可以光看主机板设计,就知道设计品质的好坏。您也许自认没那么强,不过下次您拿到主机板或是显示卡时,不妨先鉴赏一下PCB设计之吧!

0

上一篇: 航天模型原理与结构—8.结构与应力 下一篇: 机械设计常用材料特性

教程资料来源于网络,如有侵权,请及时联系平台进行删除

SolidWorks

课程目录
搜索
非标设计
轴承与轴配合的公差等级
设计齿轮时为何齿数不能小于17?
齿轮的“模数”是什么?
分割器的工作原理及应用动图集锦
流水线设计常见机构动图(一)
机械制图基础知识之形位公差
机械制图基础知识之装配图
机械制图基础知识之零件图表面粗糙度
机械制图基础知识之熟记口诀
机械制图基础知识之图样简化画法
凯时ag优质运营商:压力测量控制系统功能设计的原理
外啮合齿轮泵的工作原理
机械零件设计的基本要求
机械设计技术要求集锦
机械设计习题选——弹簧篇
机械设计时选择电动机的方法
机械设计零件设计常用材料及其选用原则
硬度对照表
一套机械设计考试试题
键的标准与键的选择
机械设计考试试题
连杆机构的设计
2006年机械工程师考试试题
齿 轮 传 动
齿轮传动链的设计
蜗杆传动
数控机床主要零件
手机结构设计规范
钻床工作台的提升装置
浅谈机架零件
挑选五金件的技巧
制药机械不锈钢材料选用原则
常用金属材料重量计算公式
浅谈机械结构设计
螺纹设计方法
滚子车床的夹头的改进设计
机械工程师必备词汇
几个机构演示动画
机械设计机械制图密封技术基础知识
机械设计中必须的六大原则
机械可靠性设计
机械设备的设计要素
机械绿色设计
滚动轴承寿命计算
手机结构设计问题汇总
机械设计图纸中的一些实用翻译
机械设计方法介绍
手机结构设计技巧
数控机床真空系统改进设计
机床防振垫铁的选用
机械可靠性的设计方法概述
滑轮
曲面造型设计
标准件使用常识
硬度、强度以及刚度的区别
机床主轴箱设计
机械设计方法
公差配合基本概念
压铸模具设计
花键联接
机械密封原理
机械密封原理和特点及材料选择
水泵设计
无堵塞泵设计
滚动轴承精度知识
连接螺纹松动的解决方法——螺纹丝套
不锈钢无缝钢管受压设计计算公式
机械设计教程-绪论
机械设计教程-一、平面机构运动简图及自由度
机械设计教程-二、平面连杆机构
机械设计教程-四、间歇运动机构
机械设计教程-五、齿轮传动
机械设计教程-六、蜗杆传动
机械设计教程-七、轮系
机械设计教程-八、轮系
机械设计教程-九、轴及轴毂联接
机械设计教程-十一、轴承
热泵原理介绍
机械产品的造型设计概论
绪论_药剂机械设计
1.1概述_1.自动上供料机构_药剂机械设计
1.2卷料上供料机构_1.自动上供料机构_药物制剂机械设计
1.3板料上供料机构_1.自动上供料机构_药物制剂机械设计
2.1概述_2.药品计量机构_药物制剂机械设计
3.1药物灌装机构_3.药物灌装机构_药物制剂机械设计
塑料制品设计原则
带式输送机设计-2.带式输送机摩擦传动理论
带式输送机设计-3.带式输送机的选型设计
带式输送机设计-4.带式输送机的操作、维护和安装
带式输送机设计-5. 链条啮合驱动的运动学与动力学
带式输送机设计-6. 其它形式的带式输送机
液压传动与气压传动基本知识
液压传动系统设计与计算
车轮设计指导书
概念设计的基础——获取新知识的资源
滑块设计
步进电动机的选择与计算
减震器工作原理详解
人机工程学_1人机工程学概论
人机工程学_5控制器及手动工具设计
人机工程学_6工作台与座椅与作业空间设计
人机工程学_7人与环境的界面及室内环境设计
成为设计高手之独孤六式
发动机
机械产品的造型设计
电磁阀的选型依据
选择电磁阀需要注意的四个特性
钢材理论重量计算
干气密封技术在离心压缩机中的应用
老机械设计工程师的工作心得
曲面中的艺术
浅谈数控机床角度头
玩具三类传动设计方法
创新设计的原则
齿轮计算公式
如何做一名出色的设计总监
产品设计中间阶段机械工程师应考虑的关键点
滚动轴承的组成及用钢要求
安全阀基础知识及选用方法
钣金件设计规范
机械设计综述及CAD简介
螺母(铜柱)的埋入方式及设计
我国常用螺纹标准
基于阀门特性进行阀门选型
非标设计心得
螺柱设计规范-螺柱设计经验
电机设计26不要
《机械CAD/CAM基础》习题解答_华中科技_何雪明
微连接技术
特殊性能钢
六西格玛(6 Sigma)设计
伺服电机的几种制动方法
电动执行器的选型
双摇杆摆动机构优点
产品结构设计资料大全
设计概念与概念设计
典型数控铣床控制软件模块化设计
失效分析方法与步骤
机械原理机构特性图解
机械工程师学习笔记
如何选择润滑油
五自由度及张合气爪的液压机械手
滑块联轴器的选用
表面粗糙度的选择技巧
游标卡尺的结构与用法
螺栓防止松脱的方法
减速机基础知识
NPT螺纹PT螺纹G螺纹和公制螺纹的区别
轴的常用材料与机械性能
焊缝及焊接符号标注.ppt
公司图纸管理规定
管螺纹基本尺寸表(GB/T7307-1987)
交流发电机的结构
机械结构设计
非标设备设计经验总结
非标机械设计的探讨
金属零件选材的一般原则
机械传动方式大比拼
弹簧制动气室工作原理
制冷设备原理
钣金件结构设计准则
联轴器的选用
磁吻振动筛设计特点
步进电机最高转速到底能达到多少
浅析旋片真空泵生产过程中降低噪音的设计方案
机械工程师的机械设计心得
机械工程师的几个等级
机械工程师笔记
解读“三图一卡”
机械名词解释
CDZ50米登高平台消防车液压缸设计
学习机械设计的方法
机械设计常见错误结构
机械零件的主要失效形式
设计机械零件应满足的基本要求
机械零件的计算准则
机械零件设计的方法
疲劳曲线
单向不稳定变应力时的疲劳强度计算
提高机械零件疲劳强度的措施
机械零件的接触强度
机械零件的抗断裂强度
摩擦
磨损
润滑剂和润滑方法
液体润滑原理
带传动类型
V带传动的设计
带轮结构设计
链传动的特点
链传动结构特点
滚子链链轮的结构和材料
链传动受力分析
滚子链传动的设计计算
齿轮传动的失效形式及设计准则
齿轮的结构设计
齿轮传动的 设计参数、许用应力与精度选择
齿轮传动的计算载荷
标准斜齿圆柱齿轮传动的强度计算
标准锥齿轮传动
变位齿轮传动强度计算
齿轮传动的润滑
圆弧齿圆柱齿轮传动简介
蜗杆传动的类型及特点
环面蜗杆传动
锥蜗杆传动
普通圆柱蜗杆传动
圆弧圆柱蜗杆传动(ZC蜗杆)
圆柱蜗杆传动主要参数和几何尺寸计算
普通圆柱蜗杆传动承载能力计算
圆弧圆柱蜗杆传动设计计算
普通圆柱蜗杆传动的效率、润滑及热平衡
普通圆柱蜗杆和蜗轮的结构设计
滚动轴承代号的表示方法
滚动轴承类型的选择
滚动轴承的工作情况
滚动轴承的寿命计算
滚动轴承与滑动轴承对照
特殊工作条件下的滚动轴承
滑动轴承概述
径向滑动轴承的典型结构
轴承材料
不完全液体润滑滑动轴承的设计计算
流体动力润滑的基本方程
径向滑动轴承形成流体动力润滑的过程
最小油膜厚度hmin
轴承的热平衡计算
径向滑动轴承的几何关系和承载量系数
联轴器的种类和特性
联轴器的选择
离合器
轴的分类
轴的材料
轴的结构设计
各轴段直径和长度的确定
轴的计算
花键联接
销联接
螺纹联接的预紧与防松
螺纹联接的强度计算
螺纹联接组的设计
螺纹联接件的材料与许用应力
螺旋传动
焊接
粘接
过盈联接
圆柱螺旋弹簧的结构、制造、材料及许用应力
三一职业技术培训丛书_汽车起重机
电子产品的设计要求
产品设计的基本要求
电子产品的结构设计过程
轴设计实例
轴系装配结构设计错误案例
BenQ工程师的机械结构设计经验
塑胶产品结构设计要点
塑胶件结构优化设计
带轮的结构设计及画法
非标机械设计经验
机械设计机械制图易犯错误
弹簧式圆锥破碎机的工作原理
联轴器选型知识
特殊齿轮减速机结构设计分析
机械原理动画大全(一)
机械原理动画大全(二)
机械原理动画大全(三)
机械原理动画大全(四)
机械原理动画大全(五)
机械原理动画大全(六)
机械原理动画大全(七)
机械原理动画大全(八)
联轴器离合器结构设计注意事项
传动系统结构设计注意事项
轴结构设计注意事项
提高强度和刚度的结构设计
提高耐磨性的结构设计
提高精度的结构设计
考虑人机工程学的结构设计问题
考虑发热、腐蚀、噪声等问题的结构设计
铸件结构设计注意事项
锻件和冲压件结构设计注意事项
机械加工件结构设计注意事项
热处理和表面处理件结构设计注意事项
考虑装配和维修的机械结构设计
螺纹联接结构设计注意事项
销联接结构设计注意事项
键及花键结构设计注意事项
过盈配合结构设计注意事项
挠性传动结构设计注意事项
零件的失效分析
零件的选材原则
齿轮类零件选材及热处理工艺分析
轴类零件选材及热处理工艺分析
丝锥/板牙选材及热处理工艺
齿轮传动的设计原理
齿轮的结构及参数
齿轮传动的分类
机械零件结构工艺性实例
线性尺寸未注公差的公差表
齿轮传动结构设计注意事项
蜗杆传动结构设计注意事项
减速器和变速器结构设计注意事项
机械原理动画大全(十)
滑动轴承结构设计注意事项
滚动轴承轴系结构设计注意事项
密封装置结构设计注意事项
油压系统和管道结构设计注意事项
机架结构设计注意事项
导轨的结构设计注意事项
弹簧结构设计注意事项
电动葫芦基础设计
理论力学基础-2.1力在轴上的投影与力的分解
理论力学基础-2.2力对点之矩
理论力学基础-2.3力偶
理论力学基础-2.4平面力系的简化
理论力学基础-2.5平面力系的平衡
理论力学基础-2.6物体系统的平衡
理论力学基础-2.7有摩擦的平衡问题
理论力学基础-3.1空间力的分解与投影
理论力学基础-3.2力对点之矩与力对轴之矩
理论力学基础-3.3力偶矩矢
理论力学基础-3.4空间力系简化
理论力学基础-3.5空间力系平衡
理论力学基础-3.6重心
理论力学基础-4.1虚位移与虚功的概念
理论力学基础-4.2虚位移原理
理论力学基础-4.3自由度与广义坐标、广义力
机械原理动画大全(九)
理论力学基础-7.3牵连运动为平动时点的加速度合成定理
理论力学基础-7.4牵连运动为转动时点的加速度合成定理
理论力学基础-8.1平面运动的概述和分解
理论力学基础-8.2平面图形上各点的速度
理论力学基础-8.3平面图形上各点加速度分析的基点法
理论力学基础-8.4运动学综合问题举例
理论力学基础-9.1动力学基本定律
理论力学基础-9.2质点运动微分方程
理论力学基础-10.1动量与冲量的概念
理论力学基础-10.2动量定理
理论力学基础-10.3质心运动定理
理论力学基础-11.1动量矩的概念
理论力学基础-11.2转动惯量
理论力学基础-11.5质点系相对于质心的动量矩定理
理论力学基础-11.6刚体平面运动微分方程
理论力学基础-12.1动能的概念和计算
理论力学基础-12.2功的概念和计算
理论力学基础-12.3动能定理
理论力学基础-12.4功率 功率方程 机械效率
理论力学基础-12.5势力场 势能 机械能守恒定律
理论力学基础-12.6动力学普遍定理的综合应用
理论力学基础-13.1达朗伯原理
理论力学基础-13.2刚体惯性力系的简化
理论力学基础-13.3达朗伯原理的应用
理论力学基础-13.4轴转动刚体的轴承动反力
理论力学基础-14.1机械振动基础
理论力学基础-14.4减振与隔振
理论力学基础-14.2自由度系统的振动
理论力学基础-15.1动力学普遍方程
老工程师的机械设计经验
齿轮传动设计的参数选择
链轮简易计算方法
列管式换热器型式的选择
电梯结构原理与安全(3)电梯工作原理与运动分析
电梯结构原理与安全(4)曳引系统主要设备与装置
使换热器结构更加紧凑的六大方法
折流板管孔直径及公差选择
船体生产设计的工作要求
平面机构运动简图及自由度
机械结构设计准则-标准件设计
机械结构设计准则-可靠性设计
机械结构设计准则-运动部件设计
手机界面设计的视觉语言
快速成型技术的应用
基本零件装配组合图例
锥齿轮环形结构设计注意事项
某公司手机结构设计流程及注意事项
航天模型原理与结构—3.机翼的翼型和升力
航天模型原理与结构—6.螺旋桨
航天模型原理与结构—8.结构与应力
PCB印刷电路板设计基础教程
机械设计常用材料特性
机械手原理动画
23种机床弹簧夹头设计图
25种方法解决丝锥、钻头断在工件里问题
石材机械导轨设计原则与加工工艺
机床上料中的防错设计
压力式比例混合装置结构及原理
管线式泡沫比例混合器构造及原理
螺栓组连接的结构设计技巧与禁忌
数控刀架刀盘任意互换,真是太巧妙了
一种公共汽车车门气动系统
各种传感器工作原理动图(2)
各种传感器工作原理动图(3)
各种传感器工作原理动图(4)
让人脑洞大开的机械传动动图
细长轴难加工,采用拆分与组焊加工方式设计
人体运动时四肢的最佳运动区域
坐着工作时手工操作的最佳尺寸
工作坐位设计的推荐尺寸
运输工具的坐位及驾驶室设计推荐尺寸
站着工作时手工操作台的有关尺寸
人的体力
一种铣床液压传动系统原理图
注塑机液压系统原理图
Q2-8型汽车起重机液压系统原理图
电液换向阀的结构及工作原理
数控机床液压系统原理图
机床液压系统原理图
双并回转起货机液压系统原理图
全液压铆接机液压原理图
精密平面磨床液压系统原理图
棘轮压缩弹簧的设计计算实例
选择抽芯铆钉的因素
通风除尘系统的阻力计算与阻力平衡
机械原理动画,值得开脑洞!
铸件设计与加工知识
一位资深机械设计师难得的工作经验与感悟
机械设计|滚珠丝杠选型过程中考虑的9个参数
搞机械的,就应该像这样开脑洞
球磨机-(2)球磨机构造及主要零部件-1
这样的机械动态图理解起来就简单了
齿轮相关参数详解
一个工程师对非标的解释
标准直齿圆柱齿轮公法线长度数值表
差动螺旋传动原理
螺旋传动的类型和应用
同步轮的选型方法
一波液压阀动态图
机械结构联接中采用内六角螺钉有什么好处
产品外观设计的安全要求
非标机器人结构设计要点
机械原理动图集锦
螺杆压缩机压缩原理
大美机械原理动态图片
飞机发动机为什么设计得容易“脱落”?
应聘机械工程师遇到的面试考题
机械原理动图一波,最后一张有点复杂!
零件热处理结构工艺性设计
焊接结构工艺性设计
与力学要求有关的12条结构设计准则
设备开发设计有哪些禁忌
非标机械设计中常用计算公式
非标机械设计常用传感器
企业常用的传动机构
资深工程师的非标机械设计感悟
无杆气缸的原理与优缺点
直线导轨的定位方式
液压气压传动基本回路动画大全
这些液压阀、液压泵的原理都清楚了吗?
紧固件选用常见误区
联轴器的选用
链传动设计计算(2)
分割器的应用案例动画
链传动设计计算(4)
链传动设计计算(5)
几个机械结构设计中的合理案例
机械设备公司的机械设计应聘考试题
机械密封有哪些方法
优秀的机械设计师应具备哪些素质
链传动
各种泵的工作原理