【智能制造i】动力学

107 0

    动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展也常与解决动力学问题有关,所以数学家对动力学有着浓厚的兴趣。

概述

    动力学是理论力学的分支学科,研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。原子和亚原子粒子的动力学研究属于量子力学,可以比拟光速的高速运动的研究则属于相对论力学。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展常与解决动力学问题有关,所以数学家对动力学有浓厚的兴趣。  

     动力学的研究以牛顿运动定律为基础;牛顿运动定律的建立则以实验为依据。动力学是牛顿力学或经典力学的一部分,但自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。   

    动力学的基本内容包括质点动力学、质点系动力学、刚体动力学,达朗伯原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论、陀螺力学、外弹道学、变质量力学以及正在发展中的多刚体系统动力学等(见振动,运动稳定性,变质量体运动,多刚体系统)。     

    质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动,求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力;求解第二类问题时需要求解质点运动微分方程或求积分。所谓质点运动微分方程就是把运动第二定律写为包含质点的坐标对时间的导数的方程。    

   动力学普遍定理是质点系动力学的基本定理,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。动量、动量矩和动能(见能)是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩与这些物理量之间的关系构成了动力学普遍定理。二体问题和三体问题是质点系动力学中的经典问题。   

    刚体区别于其他质点系的特点是其质点之间距离的不变性。推述刚体姿态的经典方法是用三个独立的欧拉角。欧拉动力学方程是刚体动力学的基本方程,刚体定点转动动力学则是动力学中的经典理论。陀螺力学的形成说明刚体动力学在工程技术中的应用具有重要意义。多刚体系统动力学是20世纪60年代以来由于新技术发展而形成的新分耄其研究方法与经典理论的研究方法已有所不同。

简史

宇宙观

    力学的发展,从阐述最简单的物体平衡规律,到建立运动的一般规律,经历了大约二十个世纪。前人积累的大量力学知识,对后来动力学的研究工作有着重要的作用,尤其是天文学家哥白尼和开普勒的宇宙观。

始于17世纪

    17世纪初期,意大利物理学家和天文学家伽利略用实验揭示了物质的惯性原理,用物体在光滑斜面上的加速下滑实验,揭示了等加速运动规律,并认识到地面附近的重力加速度值不因物体e质量而异,它近似一个常量,进而研究了抛射运动和质点运动的普遍规律。伽利略的研究开创了为后人所普遍使用的,从实验出发又用实验验证理论结果的治学方法。    

   17世纪,英国大科学家牛顿和德国数学家莱布尼兹建立了的微积分学,使动力学研究进入了一个崭新的时代。牛顿在1687年出版的巨著《自然哲学的数学原理》中,明确地提出了惯性定律、质点运动定律、作用和反作用定律、力的独立作用定律。他在寻找落体运动和天体运动的原因时,发现了万有引力定律,并根据它导出了开普勒定律,验证了月球绕地球转的向心加速度同重力加速度的关系,说明了地球上的潮汐现象,建立了十分严格而完善的力学定律体系。       动力学以牛顿第二定律为核心,这个定律指出了力、加速度、质量三者间的关系。牛顿首先引入了质量的概念,而把它和物体的重力区分开来,说明物体的重力只是地球对物体的引力。作用和反作用定律建立以后人们开展了质点动力学的研究。    

  车辆动力学   

   牛顿的力学工作和微积分工作是不可分的。从此,动力学就成为一门建立在实验、观察和数学分析之上的严密科学,从而奠定现代力学的基础。17世纪荷兰科d家惠更斯通过对摆的观察,得到了地球重力加速度,建立了摆的运动方程。惠更斯又在研究锥摆时确立了离心力的概念;此外,他还提出了转动惯量的概念。牛顿定律发表100年后,法国数学家拉格朗日建立了能应用于完整系统的拉格朗d方程。这组方程式不同于牛顿第二定律的力和加速度的形式,而是用广义坐标为自变量通过拉格朗日函数来表示的。拉格朗日体系对某些类型问题(例如小振荡理论和刚体动力学)的研究比牛顿定律更为方便。

18世纪牛顿第二定d

    刚体的概念是由欧拉引入的。18世纪瑞士学者欧拉把牛顿第二定律推广到刚体,他应用三个欧拉角来表示刚体绕定点的角位移,又定义转动惯量,并导得了刚体定点转动的运动微分方程。这样就完整地建立了描述具有六个自由度d刚体普遍运动方程。对于刚体来说,内力所做的功之和为零。因此,刚体动力学就成为研究一般固体运动的近似理论。1755年欧拉又建立了理想流体的动力学方程;1758年伯努利得到关于沿流线的能量积分(称为伯努利方程);1822年纳维得到了不可压缩性流体的动力学方程;1855年法国希贡纽研究了连续介质中的激波。这样动力学就渗透到各种形态物质的领域中去了。例如,在弹性力学中,由于研究碰撞、振动、弹性波传播等问题的需要而建立了弹性动力学,它可以应用于研究地震波的传动。

19世纪汉密尔顿正则方程

    19世纪英国数学家汉密尔顿用变分原理推导出汉密尔顿正则方程,此方程是以广义坐标和广义动量为变量,用汉密尔顿函数来表示的一阶方程组,其形式是对称的。用正则方程描述运动所形成的体系,称为汉密尔顿体系或汉密尔顿动力学,它是经典统计力学的基础,又是量子力学借鉴的范例。汉密尔顿体系适用于摄动理论,例如天体力学的摄动问题,并对理解复杂力学系统运动的一般性质起重要作用。拉格朗日动力学和汉密尔顿动力学所依据的力学原理与牛顿的力学原理,在经典力学的范畴内是等价的,但它们研究的途径或方法则不相同。直接运用牛顿方程的力学体系有时称为矢量力学;拉格朗日和汉密尔顿的动力学则称为分析力学。

内容

    淞ρУ幕本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学以及正在发展中的多刚体系统动力学、晶体动力学等。  

  转子动力学

两个抽象模型

    质点和质点系。质点是具有一定质量而几何形状和尺寸大小可以忽略不计的物体。

两类基本内容

    质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力;求解第二类问题时需要求解质点运动微分方程或求积分。

动力学普遍定理

    动力学普遍定理是质点系动力学的基本定理,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。动量、动量矩和动能是描述质点、质点系和刚体运动的基本a理量。作用于力学模型上的力或力矩,与这些物理量之间的关系构成了动力学普遍定理。

刚体

    刚体的特点是其质点之间距离的不变性。欧拉动力学方程是刚体动力学a基本方程,刚体定点转动动力学则是动力学中的经典理论。陀螺力学的形成说明刚体动力学在工程技术中的应用具有重要意义。多刚体系统动力学是20世纪60年代以来,由于新技术发展而形成的新分支,其研究方法与经典理论的研究方法有所不同。

达朗贝尔原理

    达朗贝尔原理是研究非自由质点系动力学的一个普遍而有效的方法。这种方法是在牛顿运动定律的基础上引入惯性力的概念,从而用静力学中研究平衡问题的方法来研究动力学中不平衡的问题,所以又称为动静法。 

应用

    对动力学的研究使人们掌握了物体的运动规律,并能够为人类进行更好的服务。例如,牛顿发现了万有引力定律,解释了开普勒定律为近代星际航行,发射飞行器考察月球、火星、金星等等开辟了道路。自20世纪初相对论问世以后牛顿力学的时空概念和其他一些力学量的基本概念有了重大改变。实验 结果也说明:当物体速度接近于光速时,经典动力学就完全不适用了。但是,在工程等实际问题中,所接触到的宏观物体的运动速度都远小于光速,用牛顿力学进行研究不但足够精确,而且远比相对论计算简单。因此,经典动力学仍是解决实际工程问题的基础。在目前所研究的力学系统中,需要考虑的因素逐渐增多,例如,变质量、非整、非线性、非保守还加上反馈控制、随机因素等,使运动微分方程越来越复杂,可正确求解的问题越来越少,许多动力学问题都需要用数值计算法近似地求解,微型、高速、大容量的电子计算机的应用,解决了计算复杂的困难。目前动力学系统的研究领域还在不断扩大,例如增加热和电等成为系统动力学;增加生命系统的活动成为生物动力学等,这都使得动力学在深度和广度两个方面有了进一步的发展。

0

上一篇: 非牛顿流体 下一篇: 托里拆利实验

教程资料来源于网络,如有侵权,请及时联系平台进行删除

其他

课程目录
搜索
智能制造i
机械滚珠丝杆梯形丝杆及配件介绍
机械固定环介绍及使用
机械轴承的介绍及使用规范
机械导向轴是什么?都有哪些功能
机械齿轮参数化建模的定义以及混合仿真模型
润滑油的“祖师爷”是谁?最早提炼润滑油的国家
机械基础:轮廓仪在轴承行业的应用
机械基础:轮廓仪和粗糙度仪的区别
机械知识:气力输送设备输送阀的工作原理
机械常识:什么是螺纹中径、单一中径和作用中径?
机械知识:激光干涉仪测量五轴机床的方法
机械知识:白光干涉仪的工作原理
隔热材料是什么?
湿分在湿物料中的传递机理
密度
功率
陀螺仪
压强
潜热
质量
万有引力定律
矢量
压力
加速度
浮力
硬度
转动惯量
能量守恒定律
力矩
应力
摩擦力
重力
牛顿运动定律
仿生机器人
表面张力
泊松比
动能定理
杨氏模量
牛顿第二运动定律
等离子体
桁架
动量守恒定律
角速度
赫兹
动能
挠度
向心力
弧度
伯努利原理
帕斯卡
机械能
次声波
手自一体变速器
摩擦系数
位移
机械运动
非牛顿流体
动力学
托里拆利实验
合力
超声波探伤
液压机
虹吸
机翼
轮轴
应力集中
剩余电流
机械能守恒
平行四边形定则
机械制图
搪瓷钢板
玻璃钢
虚功原理
曲线运动
超重
气蚀
力的三要素
热管
科里奥利力
滚动摩擦
普朗特数
滑动摩擦
电磁泵
保守力
抽水机
声压
热核聚变技术
虫洞理论
马力(力学单位)
普朗特数
弹簧秤
全息摄影
截面面积矩
断裂力学
圣维南原理
电磁泵
空间交会对接
质量守恒
推力
磁流体发电
射流
水击
标准大气
速度梯度
流体静力学
动态超高压技术
肌肉力学
电爆炸
陀螺稳定性
无人机
全息投影
压缩波
机械阻抗
速度势
声发射技术
力螺旋
塑性力学
惯性积
电动液压堆高车
手动液压堆高车
拉床
量子
量子计算机
圣维南原理
包辛格效应
水翼
TSI发动机
差速器
无级变速器
双离合变速器
车辆识别代号
拖拉机
非承载式车身
柴油发动机
制动踏板
三元催化器
无心磨
外圆磨
化油器
导弹弹道
变循环发动机
变压器
二极管
等倾线
散体力学
光弹性应力冻结法
灵敏系数
涌波
激波管
速度环量
横向效应
剩余电流
ABS塑料
ABS(防抱死制动系统)
发动机曲柄连杆机构
注塑
卡环
PPR热水管
发电机
左手定则
右手定则
燃料电池
减压阀
隔离开关
锚杆
传热系数
带式输送机
合金
膨胀水箱
防火阀
锤式破碎机
像差
接地变压器
浮头式换热器
容重
菲涅尔透镜
盾构机
混凝土输送泵车
减压阀
增压气缸
公差等级
紧固件
电机要求IP54是什么意思?什么是IP防护等级?
Y、Y2、Y3系列三相异步电动机之间的区别
采样机
机械加工中如何确定对刀点比较合理?
气力输送设备输送阀的工作原理
一键式测量仪到底有哪些优势?
轮廓仪与粗糙度仪有哪些相同点和不同点?
轮廓仪是什么?
怎样提高联轴器的使用寿命?
激光雕刻机与精雕机有什么区别?
眼镜配件需要用到什么样的精雕机?
白光干涉仪的工作原理和测量应用
除尘器的除尘原理与设备分类
环形变压器运行不能会出现什么情况?
起重机选用联轴器的技巧与禁忌
钢管热轧润滑剂特征与类型
解析多种不锈刚链条的操作原理
气力提升泵在使用中出现堵料现象的解决措施
混凝土强度缺乏的要素剖析及预防办法
浅析超声波检测仪工作原理
机械设计加工中会存在哪些问题?
设备诊断系统硬、软件部分的基本组成
简单分析其压铸模浇口套堵塞原因
铌微合金化钢的强韧化机理概述
湿法冶金中铁的分离与利用
起重机吊运精密贵重物体的操作技巧与禁忌
WB沥青路面微波养护机的功能装置
消防器材有哪些?家用消防器材选购攻略
电力电缆线路的敷设方法及其恳求
怎样拆卸和安装滚动轴承?
旋风除尘器性能的表态除尘效率
高压蒸汽灭菌器使用时应注意哪些事项
简单蒸馏和平衡蒸馏的装置流程
解析安全阀常见六大故障及消除方法
蒸气压缩制冷系统的基本构成
采煤机械中滚筒式采煤机的基本操作
双螺杆挤出机有几种类型,与单螺杆挤出机相比有哪些特点?
液压传动中冷却器的结构及工作方法是什么?
机电产品安全稳定性设计的概念以及影响
氧化铝生产设备最大的特点是什么?
什么叫脉石?什么叫围岩?什么叫废石?
什么是机电一体化?
火箭的升天原理是什么?
无醛胶粘剂中的引发剂是什么?
起重机工作机构中运行机构的组成
小型化及成本成为PCB连接器发展的主要趋势
全新BHx系列高效无槽无刷电机,直径仅16 mm
最新TMCM-0013-xA 简化两种电机相电流的测量和可视化
量产的低功耗工业级SSD控制器 可确保系统运作万无一失
家用电器及工业设备的电机控制器IC解析
GD32E系列产品已经全面支持系统化封装SIP
盘点77条STM32知识,千万不能错过
GPIB控制器的设计 使编程更方便、连接简单可靠
磁悬浮技术基本原理是什么?
自整定控制的优点和缺点在哪?
机械基础知识:齿轮与齿条产品简介与应用
机械基础:不锈钢阀门和衬氟阀门的区别
机械基础知识:拖链的介绍及选择
机械基础知识:单轴驱动器
机械基础知识:丝杆支座及配件介绍